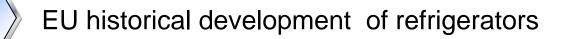


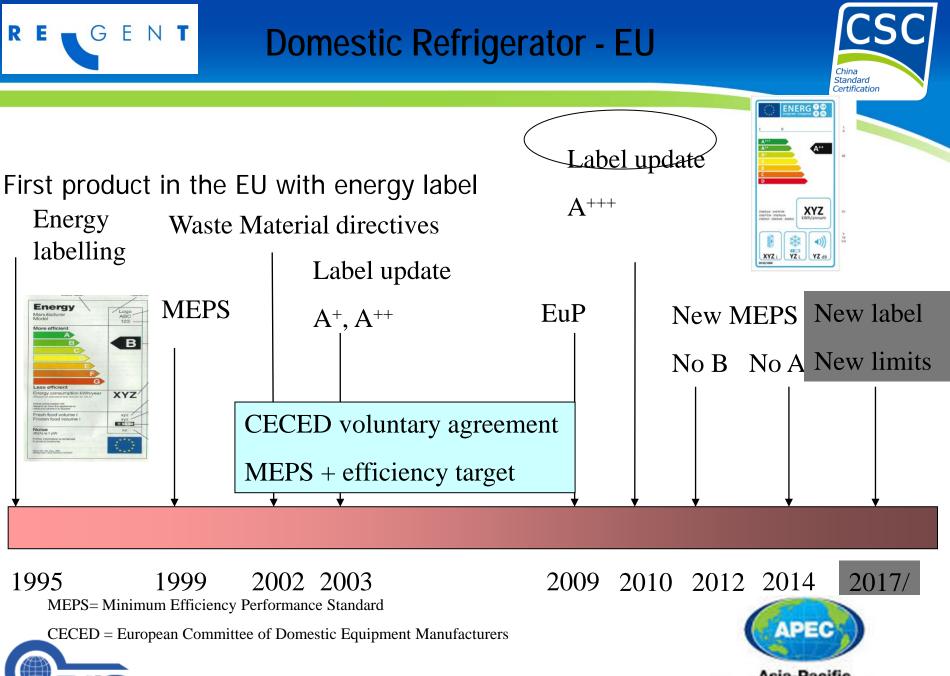
IEC 62552:2015 impacts on manufactures from EU perspective

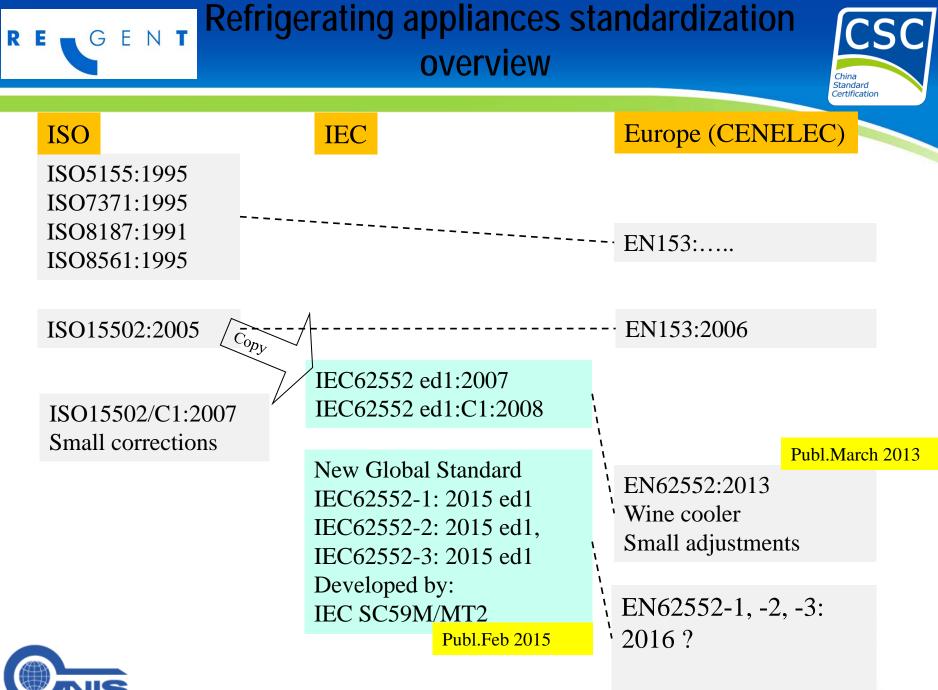

Qi Yun Dec. 2nd, 2015

Refrigerating appliances standardization overview

New global standard, main improvements

Energy consumption test in detail




Impact of global standard on product design

Concluding remarks

Economic Cooperation

RE

IEC62552-1:2015 General Requirements	IEC62552-2:2015 Performance Testing	IEC62552-3:2015 Energy consumption and volume
<text></text>		 Energy consumption Steady state Defrosts Auxiliaries Load processing Volume
More flexible	Storage with simpler load schemes Fre	ozen food empty

E G E N T New global standard: main improvements

- 1. Energy consumption tests:
 - Reduced uncertainty (no load packages)
 - Two ambient temperatures reduces circumvention options
 - Separate measurement of defrost energy and "steady state" part
 - Reduces test time
 - Variable defrost finally included
 - Flexible test time algorithm (no fixed 24 hours) with guaranteed stability
 - Reduced or equal test time despite two ambient temperatures
- 2. Volume measurement less sensitive to interpretation
- 3. Storage temperature tests still with load, but much faster
- 4. New compartment types (e.g. pantry, wine storages)
- 5. Freezing capacity determination much faster
- 6. Cooling capacity test for refrigerators

Standard Certification

Main changes compared to actual IEC62552:2007 (or ISO15502):

Impact is a function of F

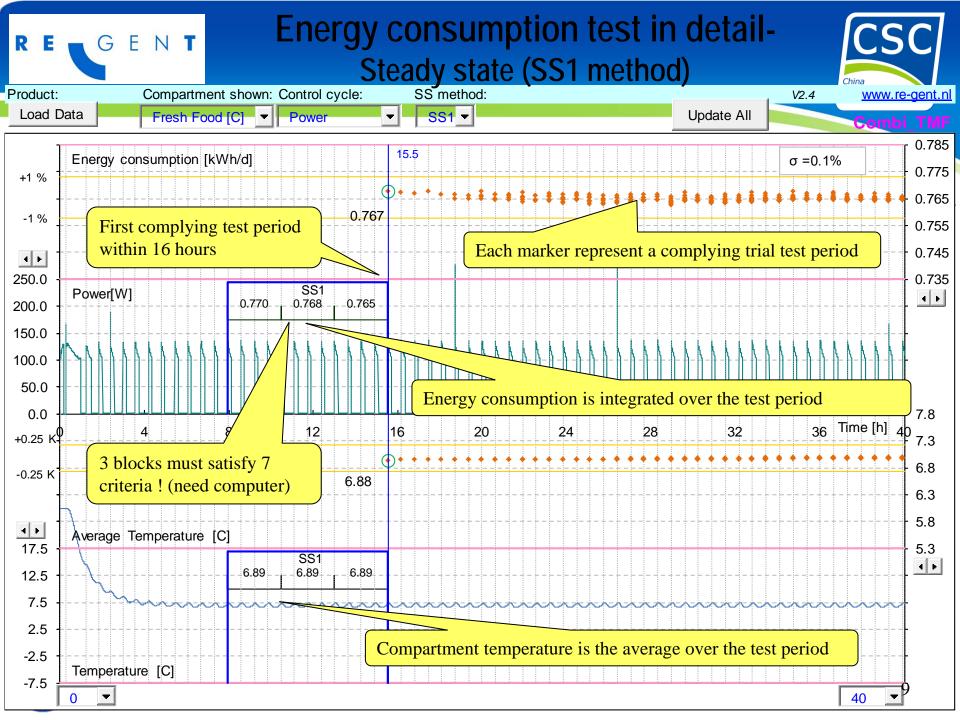
Item	IEC62552:2007	New Global Standard V 552-1,-2,-3:2015		
Ambient Temperature [°C]	25	16 and 32 ° C. Annual energy consurtion: $E_{total} = f\{E_{daily-16^{\circ} C}, F_{aaily-32^{\circ} C}\}$ where f is a function to be regionally defined. Suggested: $E_{total} = F^*365^* E_{daily-16^{\circ} C} + (1-F)^*365^* E_{daily-32^{\circ} C}$		
Fresh Food Target Temperature [° C]	5	4Energy consumption increase		
Frozen Food Target Temperature (3 and 4 star compartments) [° C]	-18 warmest package	-18 average temperature of 5 or more distributed temperature sensors (no packages)		

Energy consumption decrease

Asia-Pacific Economic Cooperation

RE

G



Energy consumption procedure

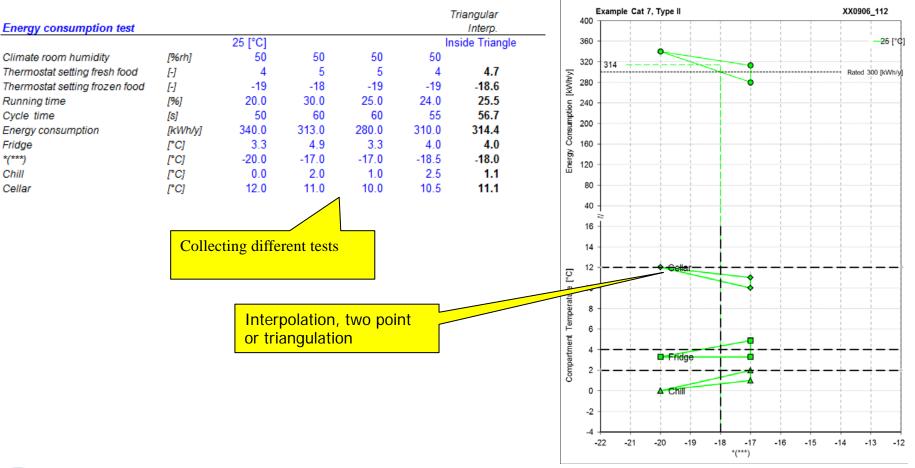
- 1. Run tests at two or more thermostat positions
- 2. Find steady state part in each test (P_{SS1} or P_{SS2})
- 3. Correct steady state part for ambient temperature
- 4. Evaluate defrost periods
- 5. Average defrosts (can be at different test points but must be at the same ambient)
- 6. Daily energy: $E_{daily} = P \times 24 + \frac{\Delta E_{df} \times 24}{t_{df}}$
- 7. Adjust compartment temperatures with an average temperature increment during defrosts
- 8. Interpolate between tests to target temperatures (e.g. fresh food 4 $^{\circ}$ C)
- 9. Add all together to get annual energy consumption (note that actual formula is regional dependent)

$$E_{total} = f\{E_{daily16^{\circ}C}, E_{daily32^{\circ}C}\} + E_{aux} + \triangle E_{processing-annual}$$

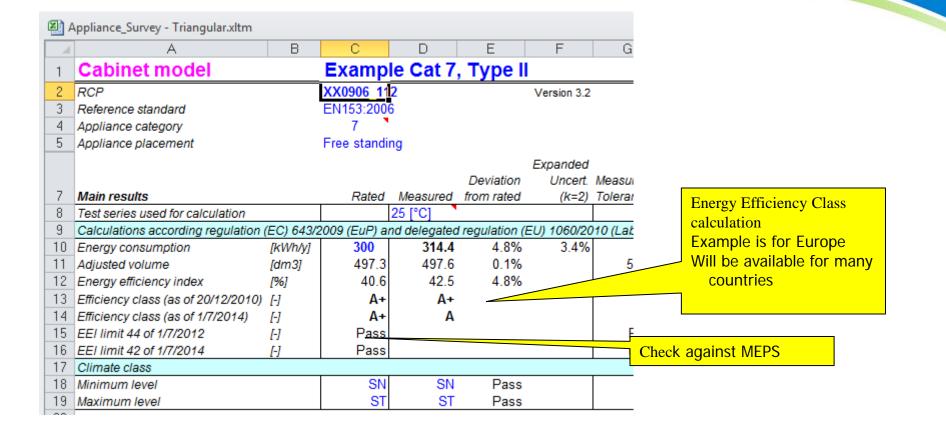
Energy consumption test in detail-Defrost analysis

ENT

G


RE

Energy consumption test in detail-Aggregation


China Standard Certification

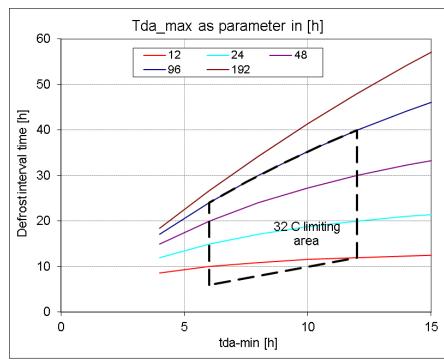
China Standard Certification

ENT

G

RE

Energy consumption test in detail-Defrost interval

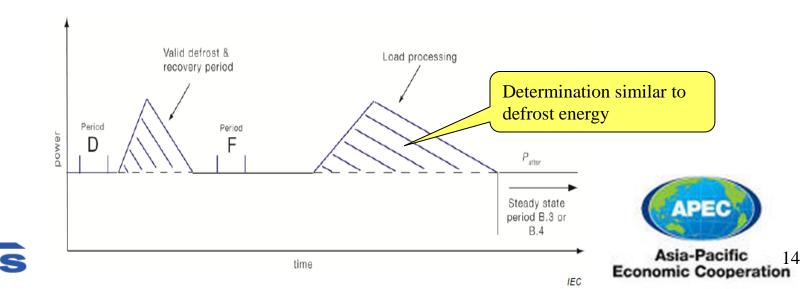


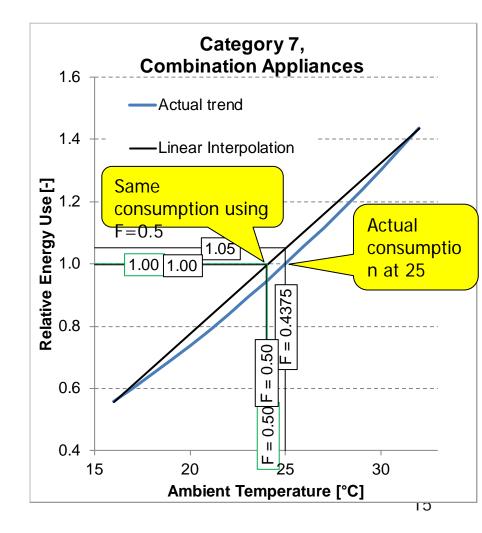
 $E_{daily} = P \times 24 + \frac{\Delta E_{df} \times 24}{t_{df}}$

- 1. t_{df} = Elapsed time (not generally used)
- 2. t_{df} depends on compressor run time (widely used)
 - Requires measurement of time interval
- 3. Variable (= adaptive defrost = more and more used)
 - t_{df} is based on a calculation only and requires manufacturer input

$$\Delta t_{df32} = \frac{\Delta t_{d-max} \times \Delta t_{d-min}}{\left[0, 2 \times (\Delta t_{d-max} - \Delta t_{d-min}) + \Delta t_{d-min}\right]}$$

 $\Delta t_{df16} = 2\Delta t_{df32}$




- 1. More complex to define stability then before. Software needed.
- 2. No load packages = Significantly shorter test times (can range from less then 10 hours to a few days)
- 3. Defrosts are measured separately from steady state -> allows shorter test periods
- 4. Energy use which can be added (not in all regions):
 - Auxiliaries (e.g. heaters and automatic ice makers)
 - Load processing efficiency (extra test in Annex G)

- 2. Linear interpolation equivalent to 24 $^{\circ}$ C -> *F*=0.5
 - Gives similar energy consumption as a real test at 25 ° C, as shown by trend study and experimental analysis
 - Trend between 16 and 32

 C is non-linear
 (increasing slope at higher ambient temperatures)

R E G E N T Impact of global standard on product design

Experimental investigation by manufacturers in CECED

Category

Formula: $E_{total} = 0.5 * E_{16^{\circ} C} + 0.5 * E_{32^{\circ} C}$ (no load processing)

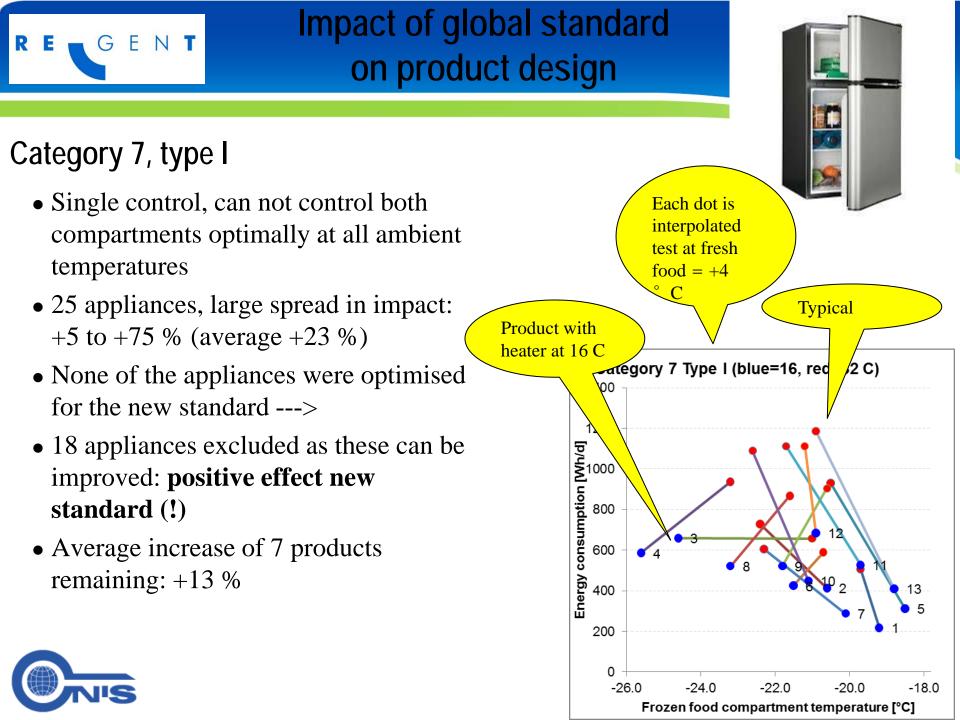
73 products split over different categories:

Categories are under revision

Average

China Standard Certification

Spread (%)



	0		change (%)	
\rightarrow	Category 1, 2 and 3	Fridges with or without chill compartments	+12	+5 +16
\rightarrow	Category 7, single control (Type I)	Combination appliances such as top and bottom mounted freezers	+13	+5 +75
Л	Category 7, double control (Type II) + Category 10, static type	Combination appliances	+2	-7 +10
\leq	Category 7, double control (Type II) + Category 10, No-Frost	Combination appliances	+4	-6+14
1	Category 8, static	Upright Freezers	-5	-15 .+6
>	Category 8, No-Frost	Upright Freezers	-2	-8+8
	Category 9	Chest Freezers	-6	-56

Main characteristic

Impact of global standard on product design

Combi single control, What to do?

- •Characteristics:
 - Typical low cost appliance
 - > Often on the MEPS boundary
 - > Ambient range now often large (e.g. T).
 - Controlling over ambient range by heaters, light activation etc.
- •Need careful redesign at 16 and 32 $^\circ\,$ C
 - Reduce heater capacity
 - > Drop climate class T, ST or SN if not needed
 - User "clever" evaporator design to play with charge
- •If nothing works, upgrade to double control

- Review of generic label directive in 2015/2016
- Study started for cold appliances, expected completion 2016
- Implementing measures 2017..2018 (both label and MEPS)
- Target is to synchronize with IEC62552-1,2,3:2015
- \bullet New standard does not define interpolation between 16 and 32 $^\circ\,$ C, proposal
 - > To obtain the same consumption as a test at 25 $^{\circ}$ C use:
 - > $E_{total} = 182.5 * E_{daily-16°C} + 182.5 * E_{daily-32°C} [kWh/y] (F=0.5)$
 - Load processing not included as effect on product ranking very small
- Adjusted volume formula needs replacement for consistency (see IEC SC59M proposal on adjusted volume)

- New global standard is released and is being integrated in energy regulations (CN, AU/NZ, EU)
- Many advantages of new standard, for manufacturers, test houses but also for consumers
- Procedures are quite different than before
- All products will require optimization to the new standard
- Single control combi most seriously affected (on purpose)

